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THE DISTRIBUTION OF Ge IN THE METALLIC PHASES 

OF SOME IRON METEORITES 

by 

J. I. Goldstein 

AB ST RAC T 

Ge distributions in  10 i ron meteorites with bulk Ge contents of 8.7 

t o  2000 ppm have been measured by electron probe microanalysis. Ge 

i s  concentrated almost entirely in the metallic phases. It was redis- 

tributed in the temperature  range at which the Widmanstatten pattern 

developed. Ge content shows a positive correlation with N i  content, 

reaching a maximum in taenite and a minimum in kamacite a t  the 

kamacite-taenite interface. The distribution coefficient of Ge between 

kamacite and taenite i s  relatively constant. The distribution of Ge i s  

discussed in  t e r m s  of i t s  t r ace  element behavior and i ts  covariance 

with Ni. 
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THE DISTRIBUTION OF Ge IN THE METALLIC PHASES 

O F  SOME IRON METEORITES 

INTRODUCTION 

One of the most debated subjects in meteorit ics is  the question of 

whether meteori tes  originated in one o r  several  parent bodies. Gold- 

berg  et al. (1951) and Lovering, et al. (1957) have found evidence that 

i ron  meteori tes  can be  grouped according to their  Ga and Ge contents. 

Various authors have suggested that the Ga-Ge contents have a genetic 

significance and that meteori tes  with s imilar  Ga-Ge abundances come 

f rom the same parent body. 

have furthered refined the Gs-Ge groups and it now appears (Goldstein 

and Short, 1967) that several  of these groups may have unique thermal  

his tor ies  . 

Recent measurements  by Wasson (1967) 

Bulk Ga and Ge have been measured in  many i ron meteorites.  How- 

ever,  little i s  known of the distribution of these elements within the 

metal phases kamacite and taenite o r  within the non-metallic inclusions 

schreibers i te  (Fe-Ni) JP troil i te FeS and cohenite (Fe-Ni) 3C . In this 

paper we report  the resul ts  of a study on the Ge distribution in  i ron 

meteori tes ,  and descr ibe the geochemical behavior of this element 

during the formation of the Widmanstatten pattern. 
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METHOD 

The distribution of Ge within a localized a r e a  (1 -5 sq. microns)  of 

a meteorite can be  measured non-destructively using an  electron micro- 

probe. 

limit of the instrument. 

sample is determined by the equation (Thieson, 1965), 

The only limitation on such a measurement is the detectability 

The amount of a t r a c e  element C, present in a 

where E,, fiB and kA a r e  the mean counts determined for  the unknown, its 

background, and the calibration standard respectively, and CA is the 

composition of the calibration standard. F r o m  this relation, it is  ap- 

parent that the detectability limit i s  governed by the minimum value of 

the difference [Ex - kB) which can be  measured  with statist ical  signifi- 

cance. Generally only about 200 ppm of most  elements can b e  detected 

in  a routine microprobe analysis. 

This detectability limit of the probe is  of limited value in  the study 

of Ge distributions. 

which lowered the detectability limit of our  electron probe to  20 ppm at 

a 95% confidence level (Goldstein and Wood, 1966). This allowed meas- 

urements  of meteori tes  in  Ga-Ge groups I, 11, and III (Lovering, et al.,  

1957). 

Therefore,  experimental procedures  were  developed, 
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To obtain a detectability limit of 20 ppm, a homogeneous calibration 

standard containing 1.1 wt 70 Ge (CA), 5.1 wt 70 N i  and Fe was prepared. 

The Ge intensity GA f rom this standard was measured before and af ter  

each determination of Cx. 

measured using homogeneous Fe-Ni standards (Goldstein, Hanneman, 

and Ogilvie, 1965) containing less  than 10 ppm Ge. Measurements of 

the Ge concentration (Cx) in each area  were made by repeated analyses 

of peak and background. 

The background intensity f o r  Ge,GB, was 

All the measurements were made with an ARL (Applied Research 

Laboratory) microprobe operating at 35kv and 0.2u.A specimen current.  

The Gek, and Ni,, radiation were measured simultaneously using L iF  

crystals.  A total counting t ime of one hour was necessary for  the detec- 

tion of 20 ppm of Ge in the metallic phases. 

Unweathered surfaces of a l l  the meteori tes  studied were examined 

microscopically and a section was made perpendicular t o  one kamacite 

band system. 

and the oriented band system was identified. 

in  kamacite bands which were oriented perpendicular to  the polished 

surface. 

This section was polished through 1/4 micron diamond 

Ge was always measured 
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RESULTS 

The Ge content of the minerals schreibersite (rhabdite), troilite 

and cohenite was measured in several  meteorites. 

identified microscopically and compositionally with the probe. 

clusions and meteorites studied a r e  listed in Table I. In these cases  the 

background intensity, N,, for the inclusions was measured by analyzing 

the X-ray continuum intensity on both sides of the Geka peak. The de- 

tectability l imit  in this case was 40 ppm. In all the inclusions analyzed, 

the Ge content was less  than the detectability limit of 40 ppm. 

fore,  almost all the Ge i s  concentrated in the metal  phases of the 

meteorite. 

The inclusions were 

The in- 

- 

There- 

Measurements of both the Ge and N i  distribution in the metal  phases 

of 10 meteorites were made. One example of the Ge and N i  distribution 

in the kamacite, taenite, and plessite of the Butler meteorite,  2000 ppm 

(Goldstein, 1966) is given in F i g .  1. 

point analysis and the relative precision was *2.570 for  the Ge. 

variation is  typical of that found for the octahedrites. The N i  distribu- 

tion in non-uniform in both kamacite and taenite. 

The data was taken by a point to 

The N i  

In the taenite, the N i  

in plessite to almost 50 wt. 70 N i  in taenite near  the kamacite-taenite 

content var ies  from a minimum of 16 wt. 70 N i  
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border. In the kamacite, the N i  content i s  approximately uniform ex- 

cept near the kamacite-taenite border where the N i  i s  depleted. 

The Ge var ies  directly with the Ni content of the metal phases. 

Therefore, during the cooling period in which the Widmanstatten pattern 

forms,  there is a general  movement of Ge f rom the growing kamacite 

phase to the parent taenite phase. In Butler, for example, the Ge content 

increases  to over 4000 ppm in taenite a t  the kamacite-taenite interface. 

The Ge and N i  contents of the other nine meteorites vary in the 

same way. The Ge and N i  distributions for those meteorites with more  

than 100 ppm Ge a r e  shown in Fig.  2. Table I1 summarizes the data ob- 

tained for all  the meteorites studied. The Ge contents measured in 

taenite a t  the kamacite-taenite interface ( C;ZMax) vary directly with the 

bulk Ge content of the meteorite. 

about the same for a l l  the meteorites studied, 2.0, with a standard de- 

viation of 0.46. The Ge content in the center of the plessite, where the 

N i  

The ratio of to bulk Ge is 

content is a minimum, i s  a lso listed. 

The Ge content of the kamacite var ies  directly with the N i  content 

De- 

To describe 

(F igures  1 and 2)  of the phase and also with the size of the phase. 

tailed measurements of these variations have been made. 

these measurements we must f i r s t  define a few terms.  

bands which have a bandwidth o r  plate thickness typical of the kamacite 
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plates which make up the Widmanstatten pattern of the meteorite a r e  

defined a s  "average kamacite bands" hereafter re fer red  to a s  (AKB). 

The AKB a r e  the first kamacite bands to nucleate a s  the meteorite 

cooled. They a r e  usually the largest  bands and used in classifying the 

octahedral s t ructure  of the meteorite. Kamacite bands smaller in size 

than the AKB nucleated in a temperature range below that in which the 

AKB formed. Normally these kamacite bands a r e  about 10-50 microns 

in width and they will be called "low temperature kamacite" (LTK). TO 

describe variations in Ge content f rom one kamacite plate to another, 

we will use the Ge content measured in the center of the phase. 

The measured Ge contents of kamacite for 10 meteorites studied 

a r e  given in Table 111. 

listed for those meteorites where the precision of the analysis was 

better than *20% of the amount present. 

was obtained. In all cases ,  the Ge content of the average-sized kamacite 

bands was greater  than that of the low temperature  kamacite. Repro- 

ducible differences in Ge ( >  20 ppm) were measured for  several  AKB 

in one meteorite (Table IV).  However, large differences were  promi- 

nent only in Toluca. 

The ratio of Ge in AKB to Ge (bulk) a r e  a lso 

An average ratio of about 0.85 

Measurements of the Ge decrease in kamacite near  the kamacite- 

taenite interface were difficult to make since severe  Ge-Ni depletion 

only occurs about 10-20 microns f r o m  the interface,  the amount of Ge 
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depletion i s  relatively small  and the diameter of the X-ray emission 

a r e a  at 35kv and 0.2pA f rom the electron probe i s  about 5 microns.  

Attempts were made to  measure  the depletion from three  meteorites.  

In Canyon Diablo, the minimum measured Ge in kamacite was 150 ppm, 

a depletion of about 70 ppm from the AKB, in Odessa, 200 ppm, a de- 

pletion of about 60 ppm, and in Toluca, 110 ppm, a depletion of about 60 

PPm* 

It is interesting to  note that the minimum measured Ge in kamacite 

for these meteori tes  i s  about the same a s  that of the low temperature  

kamac it e. 

DISCUSSION 

Precis ion and Accuracv 

Ge can be  accurately measured in the ppm range since corrections 

to  the measured data a r e  unnecessary [Eq. ( l ) ] ,  and a well character-  

ized Ge standard and Fe-Ni background standards were available. A 

reasonable average of Ge values determined for kamacite and taenite 

i n  our sample of 10 meteorites give approximately the same bulk Ge 

values measured by other investigators. 
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The precision of an analysis is  given by the detectability limit (CDL)  

for  t race determination (Ziebold, 1965), 

P 

were; n = number of measurements  of sample and i ts  background 

t student's distribution factor 

s = estimate of total variance: 

- - 
1 (N, - N,)' + 1 (NB - NB)2 

2 ( n -  1) 
s 2  z ( 3 )  

F o r  9570 confidence level, t can b e  specified f rom a "Students" 

The r e s t  of the factors  in Distribution Factor  table (Fisher ,  1950). 

Eqs. (2) and (3 )  can be  measured, 

for a counting t ime of one hour indicate that GL = 20 ppm. The preci- 

sion of a n  analysis E ,  is  therefore C,, / C , .  

limit includes the instrumental e r r o r s  caused by instabilities in  the high 

voltage, counting circuitry etc. of the electron probe and the e r r o r  in- 

duced by the refocussing of the specimen in  the  light optics of the elec- 

t ron probe. 

The measurements  made in this study 

The measured  detectability 

Comparison with Previous Measurements 
~~ ~ 

Very few measurements  of the  Ge distribution in metall ic meteori tes  

10 



have been made to  date. 

Ge in  a troil i te nodule of Odessa by .a calorometric technique. 

et a1 (1958) measured 32  and 19 ppm in two inclusions in the schreiber- 

si te and 30 ppm in the troil i te of Sikhote-Alin by emission spectroscopy. 

The results of this study show that less  than 40 ppm Ge i s  present in 

the minerals  schreibersite,  troil i te o r  cohenite regardless of the bulk 

Ge. 

In one study, Shima (1964) measured 122 ppm 

Smales 

The distribution of Ge in the metal phases of iron meteorites were 

measured spectrographically by Nichiporuk (1958). To determine the 

average Ge in kamacite and taenite, both kamacite and taenite were 

isolated chemically in dilute acid. His measurements  indicated that Ge 

very strongly followed N i .  However, h i s  Ge values a r e  not correct.  A 

comparison of the values measured f o r  the same meteorites a r e  given 

in  Table IV. 

Geochemical Behavior of Ge 

The results of this study of Ge in iron meteorites are:  

1. Ge i s  found in the metallic phases of the iron meteorites. 

Ge content in schreibersite, troilite, and cohenite i s  l ess  than 

40 ppm. 

The 
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2. 

3. 

4. 

5. 

Ge follows the N i  distribution in the kamacite and taenite 

phases. Bulk movement of Ge occurs a t  temperatures  where 

the Widrnanstatt en pattern formed. 

The Ge content in taenite a t  the kamacite-taenite interface 

var ies  with the bulk Ge of the meteorite. 

of C:zmax /Ge bulk i s  approximately constant a t  2 €or a l l  the 

meteori tes  studied, which cover the range of Ge content from 

2000 ppm to l e s s  than 50 ppm. 

However, the ratio 

The Ge content of average-sized kamacite bands var ies  f rom 

one meteori te  to another. The ratio of Ge in kamacite to  bulk 

Ge i s  approximately 0.85 f o r  a l l  the meteori tes  studied having 

bulk Ge contents from 2000 ppm to 140 ppm. 

The Ge content of low temperature  kamacite i s  substantially 

lower than that of average-sized kamacite bands. 

Ge content in kamacite which occurs  near  the kamacite-taenite 

boundary i s  about the same a s  the Ge content of low temperature  

kamacit e. 

The minimum 

Measurements of Ge in  chondrites indicate that at high tempera tures  

(1500 "K) Ge behaves in a siderophilic manner.  

tinues to  temperatures  where the Widmanstatten pattern fo rms ,  then Ge 

If this  tendancy con- 
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will remain in  the metal  a t  the same t ime that some of the non-metallic 

inclusions precipitate in the solid state. 

The relations f o r  Ge in iron meteorites a s  summarized by state- 

mentsf 2-5 a r e  determined by the interaction of complicated thermo- 

dynamic and kinetic factors. 

Thermodynamic data on third element impurit ies in the solid state i s  

almost completely lacking and the Fe-Ni-Ce phase diagram has not been 

studied. In the binary system Fe-Ge, Ge ac ts  a s  an a stabilizer, and is 

soluble in  a to about 15 wt 70 (Hanson, 1958). In the binary system 

Ni-Ge, Ge ac ts  a s  a y stabilizer and i s  soluble in y to about 15 wt 70 

(Hanson, 1958). Therefore Ge, in  the amount found in meteorites (50.2 

wt 70) i s  soluble either in bcc kamacite o r  fcc taenite and can be  con- 

sidered a s  a t r ace  element. As such, the Ge has l i t t le influence on the 

phase relations of kamacite/taenite. However, the relative amounts of 

Fe and N i  in kamacite and taenite greatly influence the distribution 

Unfortunately, l i t t le i s  known about either. 

of Ge within the metallic phases. Therefore the Ge distribution i s  

influenced by two main factors ,  bulk amount and the compositions 

of the metallic phases. 

It i s  difficult to predict whether Ge follows the N i  o r  Fe gradients 

i n  the metallic phases since Fe and N i  a r e  very s imilar  geochemically, 
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having similar valencies (Pauling, 1960) and atomic radii  (Hume 

Rothery and Raynor, 1962). The fact that Ge prefers  to be  associated 

with N i  has  been demonstrated by several  experiments. In the f i r s t  ex- 

periment Fe-Ni-Ge alloys with 5.1 wt. 70 N i  and either 1.1 wt. 70 o r  

0.5 wt. 70 Ge alloys were melted and solidified, the solidification process  

taking about one hour. 

probe, cored dendrites were found in which the Ge followed the N i ,  in- 

creasing f rom the center of the dendrite to the edge of the dendrite. 

a second experiment an inhomogeneous Fe-Ni-Ge alloy with 1.1 wt. 70 Ge 

and 5.1 wt. 70 N i  was annealed a t  1300°C fo r  varying amounts of time. 

The Ge followed the N i ,  increasing a s  the N i  diffused f rom regions of 

high N i  concentration to regions of low N i  concentration. Evidently the 

presence of N i  lowers the activity of Ge, stimulating the Ge to follow 

the N i  content. The fact that Ge follows the N i  distribution in the meta l  

phases of the iron meteorites,  i s  consistent with experimental evidence. 

When the alloys were analyzed with the electron 

In 

At the kamacite-taenite interface, equilibrium is maintained to  

cooling temperatures of the order  of 350°C during the formation of the 

Widmanstatten pattern (Wood, 1964, Goldstein and Ogilvie, 1965). At 

this interface the N i  content in taenite i s  a maximum ( C;JMax ) and the 

N i  content in kamacite i s  a minimum ( C:iMin ) (Reed, 1965; Short and 

Goldstein, 1967). The ratio ( C;iMax / CzjMin ) measured  with the electron 
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probe var ies  between 6 and 10 although the actual ratio i s  probably the  

same for  all the iron meteorites,  about 10 ( C;jMax 2 50 wt yo, CtiMin 2r 

5 wt 70). 

taenite, which i s  a function of the N i  content in the two phases, is  con- 

stant with respect to bulk N i  and Ge. The actual amount of Ge in the 

AKB and the taenite a t  the two phase boundary i s  determined by the 

partition ratio for Ge and the bulk Ge content, CB","Lk. 

Therefore the partition ratio for Ge between kamacite and 

It has been shown previously (Goldstein, 1965) that, even within one 

meteorite,  the average N i  content of the kamacite bands var ies  with the 

width of the band. The variation of the N i  content of the band i s  a func- 

tion of the temperature  of nucleation of the band, the a/u+y boundary of 

the phase diagram and the width of the band. The N i  in the AKB 

which nucleate at high temperatures cannot equilibrate a t  low temp- 

e ra tu re s  due to ' the  large width of the band and the low diffusion 

rates .  The N i  in the low temperature kamacite can equilibrate a t  

low temperatures  because the width of the band is  small  allowing 

m o r e  extensive diffusion. The variation of the average N i  content with 

kamacite band width determined by Goldstein (1965) i s  shown in Fig .  3. 

The AKB in  each meteorite usually have a higher average N i  content 

than the LTK. 
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Since Ge follows the N i  gradient, it i s  entirely consistent that the 

Ge content i s  higher in  the AKB than in the LTK. 

(Agrell et al, 1963) that a N i  decrease i s  observed in average kaniacite 

bands near the kamacite-taenite boundary. This effect has  been ex- 

plained (Goldstein, 1965) a s  due to the decreasing solubility of N i  in 

kamacite below 450°C. The decrease in Ge near the kamacite-taenite 

interface of the AKB i s  consistent with the decrease  in N i  content. 

depletion effect occurs in th.e same temperature  range a s  that fo r  the 

growth of the LTK. Therefore it i s  also reasonable f o r  the N i  and Ge 

contents near the a/y boundary and in the low temperature  kamacite to 

be about the same. 

It has  also been shown 

The 

Since the distribution of Ge i s  dependent not only on thermodynamic 

factors but also on kinetic factors,  it was thought that differing cooling 

rates  might be  an important factor in determining the Ge distribution. 

The cooling ra tes  fo r  the meteori tes  studied a r e  listed in Table 111. 

Although these meteorites differ in cooling r a t e  by an order  of magni- 

tude, no correlation with Ge distribution can be  seen. In another study 

it has been shown, however, (Goldstein and Short, 1967b) that bulk Ge 

and cooling ra te  a r e  strongly correlated.  
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CONCLUSIONS 

The Ge present in i ron meteorites i s  concentrated in  the metallic 

phases. 

for  which large inclusions a r e  avoided, will yield good representative 

bulk analy s e s. 

Therefore measurements  of the Ge compositions of meteorites 

Ge var ies  in  the same way a s  the Ni reaching a maximum Ge con- 

tent in  taenite and a minimum Ge content in kamacite a t  the kamacite- 

taenite interface. 

manstatten pattern formed and the redistribution was dependent on a 

relatively constant partition coefficient for  Ge between kamacite and 

taenite and the strong affinity of Ge for  a r eas  of high Ni content. 

It was redistributed during the period when the Wid- 
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Table I 

INCLUSIONS ANALYZED 

Mineral 

Schreibersite 
(R habdit e )  

Troil i te 

C ohenit e 

Meteorite 

Odes sa 

Carbo 

Grant 

Canyon Diablo 

Butler 

Grant 

Carbo 

Odes sa 

De scription 

22 

3 phosphides, 45 wt. 70 N i .  

1 phosphide, 45 wt. 70 N i  

1 phosphide surrounding a troil i te 
nodule * 25 wt. 70 N i  

1 rhabdite particle, * 41 wt. % N i  

1 phosphide particle 37 wt. 70 N i  
2 phosphide particles,  

Q 50 wt. 70 N i  

One inclusion 

Two inclusions 

Four inclusions 
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Table IV 

Meteorite Nichipo ruk ( 195 8) 

Kamacit e Taenite 

Canyon Diablo 23 2200 

Toluca 28 45 0 

Ge DISTRIBUTION IN THE METALLIC PHASES 

OF IRON METEORITES 

This Study 

Kamacite Taenite 

220k40 200-430 

170*20 170-380 
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ILLUSTRATIONS 

Figure 1. Distribution of Ge and N i  i n  the kamacite and taenite phases 

of the Butler meteorite. 

Figure 2. Distribution of Ge and N i  i n  the metallic phases of the Odessa, 

Canyon Diablo, Four  Corners, Toluca, and Hualapai iron 

meteorites. Ge is indicated by the open circles,  N i  by the 

closed circles.  

Figure 3. Average N i  concentration in kamacite versus  the average 

half-width of kamacite for several  meteorites. 

. 
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